Главная » Вопросы » Школа » Геометрия

Сформулируйте и докажите теорему о перпендикуляре, проведённом из данной точки к данной прямой
Сформулируйте и докажите теорему о перпендикуляре, проведённом из данной точки к данной прямой.
Категория: Геометрия | Добавил: damian (31.10.2018)
Просмотров: 142 | Ответы: 2 | Рейтинг: 5.0/1
Ответов: 2
0 shurik
31.10.2018 оставил(а) комментарий:
Из любой точки, не лежащей на данной прямой, можно опустить на эту прямую перпендикуляр, и притом только один.

Доказательство: предположим, что на плоскости, которой принадлежат и прямая, и точка, таких перпендикуляров существует два. Поскольку точка вне прямой принадлежит обоим перпендикулярам, получаем треугольник с вершиной в этой точке и основанием, расположенном на прямой. Так как оба перпендикуляра составляют с прямой углы по 90° (углы при основании треугольника) плюс угол при вершине, то сумма внутренних углов такого треугольника получается больше 180°, - а это на плоскости осуществить невозможно. Следовательно, наше предположение о том, что через одну точку к данной прямой на плоскости можно провести больше одного перпендикуляра, - не верно и такой перпендикуляр существует только один. Теорема доказана.
0 El_Storm
31.10.2018 оставил(а) комментарий:
Теорема. Из точки, не лежащей на прямой, можно провести перпендикуляр к этой прямой, и притом только один.
avatar