Главная » Вопросы » Школа » Математика

Чем длинная шкала исчисления отличается от короткой?
Чем длинная шкала исчисления отличается от короткой?
Категория: Математика | Добавил: Oleg74 (31.07.2018)
Просмотров: 102 | Ответы: 3 | Рейтинг: 5.0/1
Ответов: 3
0 Forget
31.07.2018 оставил(а) комментарий:
Короткая шкала
В случае короткой шкалы все названия больших чисел строятся так: в начале идёт латинское числительное, обозначающее степень тысячи, а в конце к нему добавляется суффикс «-иллион». Исключение составляет название «миллион», которое образовано от латинского числительного mille «тысяча» при помощи увеличительного суффикса «-он» -one). Так получаются числа — миллион, биллион, триллион, квадриллион, квинтиллион, секстиллион и т. д. Система наименования чисел с короткой шкалой используется в России, Белоруссии, Украине, США, Канаде, Великобритании, Ирландии, Австралии, Бразилии, Болгарии, Греции, Румынии и Турции. Количество нулей в числе, записанном по этой системе, определяется по формуле 3·x+3 (где x — латинское числительное).

Длинная шкала
Названия чисел в этой системе строятся так: к латинскому числительному, обозначающему степень миллиона, добавляют суффикс «-он», название следующего числа (в 1000 раз большего) образуется из того же самого латинского числительного, но с суффиксом «-ард». То есть после триллиона в этой системе идёт триллиард, а только затем квадриллион, за которым следует квадриллиард и т. д. Количество нулей в числе, записанном по этой системе и оканчивающегося суффиксом «-иллион», определяется по формуле 6·x (где x — латинское числительное) и по формуле 6·x+3 для чисел, оканчивающихся на «-иллиард».

В настоящее время применяется в большинстве франкоязычных, скандинавских, испаноязычных и португалоязычных стран, кроме Бразилии.
0 Ninaarc
31.07.2018 оставил(а) комментарий:
0 spring
31.07.2018 оставил(а) комментарий:
История современной системы наименования больших чисел ведёт начало с середины XV века, когда в Италии стали пользоваться словами «миллион» (дословно — большая тысяча) для тысячи в квадрате, «бимиллион» для миллиона в квадрате и «тримиллион» для миллиона в кубе. Об этой системе мы знаем благодаря французскому математику Николя Шюке (Nicolas Chuquet, ок. 1450 – ок. 1500): в своём трактате «Наука о числах» (Triparty en la science des nombres, 1484) он развил эту идею, предложив дальше воспользоваться латинскими количественными числительными (см. таблицу), добавляя их к окончанию «-иллион». Так, «бимиллион» у Шюке превратился в биллион, «тримиллионом» в триллион, а миллион в четвёртой степени стал «квадриллионом».

В системе Шюке число 10⁹, находившееся между миллионом и биллионом, не имело собственного названия и называлось просто «тысяча миллионов», аналогично 10¹⁵ называлось «тысяча биллионов», 10²¹ — «тысяча триллионов» и т.д. Это было не очень удобно, и в 1549 году французский писатель и учёный Жак Пелетье (Jacques Peletier du Mans, 1517–1582) предложил поименовать такие «промежуточные» числа при помощи тех же латинских префиксов, но окончания «-иллиард». Так, 10⁹ стало называться «миллиардом», 10¹⁵ — «биллиардом», 10²¹ — «триллиардом» и т.д.

Система Шюке-Пелетье постепенно стала популярна и ей стали пользоваться по всей Европе. Однако в XVII веке возникла неожиданная проблема. Оказалось, что некоторые учёные почему-то стали путаться и называть число 10⁹ не «миллиардом» или «тысячей миллионов», а «биллионом». Вскоре эта ошибка быстро распространилась, и возникла парадоксальная ситуация — «биллион» стал одновременно синонимом «миллиарда» (10⁹) и «миллиона миллионов» (10¹⁸).

Эта путаница продолжалась достаточно долго и привела к тому, что в США создали свою систему наименования больших чисел. По американской системе названия чисел строятся так же, как в системе Шюке, — латинский префикс и окончание «иллион». Однако величины этих чисел отличаются. Если в системе Шюке названия с окончанием «иллион» получали числа, которые являлись степенями миллиона, то в американской системе окончание «-иллион» получили степени тысячи. То есть тысяча миллионов (1000³ = 10⁹) стала называться «биллионом», 1000⁴ (10¹²) — «триллионом», 10005 (10¹⁵) — «квадриллионом» и т.д.

Старая же система наименования больших чисел продолжала использоваться в консервативной Великобритании и стала во всём мире называться «британской», несмотря на то, что она была придумана французами Шюке и Пелетье. Однако в 1970-х годах Великобритания официально перешла на «американскую систему», что привело к тому, что называть одну систему американской, а другую британской стало как-то странно. В результате, сейчас американскую систему обычно называют «короткой шкалой», а британскую систему или систему Шюке-Пелетье — «длинной шкалой».

Любопытно, что у нас в стране окончательный переход к короткой шкале произошёл лишь во второй половине XX века. Так, например, ещё Яков Исидорович Перельман (1882–1942) в своей «Занимательной арифметике» упоминает параллельное существование в СССР двух шкал. Короткая шкала, согласно Перельману, использовалась в житейском обиходе и финансовых расчётах, а длинная — в научных книгах по астрономии и физике. Однако сейчас использовать в России длинную шкалу неправильно.

До XVII века на Руси применялась собственная система наименования чисел. Десятки тысяч назывались «тьмами», сотни тысяч — «легионами», миллионы — «леодрами», десятки миллионов — «воронами», а сотни миллионов — «колодами». Этот счёт до сотен миллионов назывался «малым счётом», а в некоторых рукописях авторами рассматривался и «великий счёт», в котором употреблялись те же названия для больших чисел, но уже с другим смыслом.
avatar